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Oligonuclear Ru(ll) complexes with polypyridine ligands are Scheme 1
under intense study because of the rich photophysical and o4
electrochemical properties of these systems and potential 1 N 2+
applications in various supramolecular structures as electronic NN S = I 24
and photomolecular devicésRelatively little attention, how- s _N 0 HoN N "}N

. . Ru ~N o/

ever, has been paid to the absolute stereochemistry of these A~ + _Ru
supermolecules in cases where substitutionally inert, octahedral ‘N N "f 0] HoN N -Iil\N-
tris chelate [Ru(L-LJ]** complexes are used as molecular W = ~ W

building blocks. Supramolecular species, such as difhers,

trimers? dendrimers, and polymers, constructed from these A-1 A-3
tris(bidentate) complexes are usually assembled via ligand reflux 2 hr
displacement reactions with little direct control for the product 1:1 MeCN/ H,O
stereochemistry. As a consequence of the chirality of these 4+
bglldlng block$ (4 or A), the prpducts consist 01_‘ compllc_a'ged \ N \ ~ %
mixtures of enantiomers and diastereomers which are difficult, ‘N\l\_l- '\} N ) ENN
if not impossible, to further purify. We have developed a Ru” = NS 2
synthetic strategy that will allow the efficient assembly of -N/Nl Y =N N/R—:J\
enantiomerically pure oligonuclear and dendrimeric ruthenium 7 A L ~ U FN_N-
complexes from chiral precursors. This approach differs from AAA Kﬁ@
>
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structurally related dimers, such as [(bgfRU(tpphz)Ru- = 0
(opy)]** 22Pand ruthenium-based coordination polym&@ur g
work differs in that formation of the tpphz ligand occurs from 3
the reaction of coordinated precursors, which is optimal for §
maintaining optical purity. -20
The enantiomers off)-1(PF;), are obtained on a large scale
(>1 g) by the resolution of the corresponding chloride with
sodium arsenyli-tartrate and subsequent metathesis of the -40 T T T T T

individual diastereomers with ammonium hexafluorophosphate,
as described in ref 11a. The enantiomers¥)-8 are formed
directly from the resolved complexeA;1 and A-1, by initial
conversion to [Ru(pheg(l,10-phenanthroline-5,6-dioxinte]

(2) and subsequent reduction withih-HO using a 10% Pd/C  4ctive” whereas the enantiomers,A-4 andA,A-4, show equal
catalyst to giveA-3 and A-3, respectively (Scheme 2J. This  pyt opposite molar ellipticities (shown in Figure 1), as expected.
synthetic route minimizes the number of optical resolutions The overall magnitude of the molar ellipticity is approximately
required and ties the absolute stereochemistry3 db that twice that of the starting materials, indicating an additive
of 1.15 ) contribution of each metal center to the CD.

The other two dinuclear complexes,A-4 andA,A-4, were This work demonstrates the viability of using coupling
obtained similarly by condensing appropriate dione and diamine reactions between coordinated ligands in chiral metal complexes
species.*H and**C NMR spectra of the diastereomelsA-4 as a completely modular approach to the stereospecific synthesis
andA,A-4 are indistinguishabl&, probably because the large  of dinuclear metal complexes. The phenazine coupling reaction
distance between Ru centers12.7 A)22 however, circular o coordinated ligands has been optimized to occur in high yield
dichroism (CD) data clearly identify the diastereomers and yth retention of optical activity to form an irreversible bridge
enantiomers. The\,A-4 meso diastereomer is not optically  petween monomers. We are currently pursuing the extension
of this reaction toward the synthesis of enantiopure multi-metal
assemblies.

400 450 500 550
Wavelength (nm)

Figure 1. CD spectra of enantiomers 8fand4 in acetonitrile.
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(12) A solution of 148 mg (0.154 mmol) &-1(PFs), and 153 mg (0.159
mmol) of A-3(PFg)2 in 20 mL of 1:1 MeCN/HO was refluxed under

Nz for 3 h. The solution was then concentrated to a small volume and
the product precipitated by addition of an excess of)RIH dissolved

in 10 mL of H,O. The precipitate was filtered off, washed with three
10 mL portions of water, and drigd vacuoat 60°C for 12 h. Yield:

283 mg (96%)A,A-4(PFs)4 'H NMR (300 MHz, acetonelk), 6: phen

8.78 (d,J = 8.18 Hz, 8H), 8.56 (dJ = 5.21 Hz, 8H), 8.39 (s, 8H),
7.77 (dd,J; = 8.06 Hz,J, = 5.33 Hz, 8H); tpphz 10.08 (d} = 8.30

Hz, 4H), 8.37 (dJ = 5.41 Hz, 4H), 7.98 (ddJ; = 8.08 Hz,J, =

5.42 Hz, 4H).A,A-4(PFs)4 13C NMR (75 MHz, acetonels), 6: phen
155.91, 148.85, 138.00, 131.99, 129.10, 127.13; tpphz 154.42, 154.00,
151.99, 141.37, 130.99, 128.41. Anal. Calcd #(PFs)s2H20,
CroHagN14F240:PsR W C, 44.97; H, 2.52; N, 10.20. Found: C, 44.22;

H, 2.34; N, 9.77. Trace impurities can be removed by chromatography
on neutral alumina (10 mg/mL N4PF; in acetone).

Other examples of the phenazine condensation reaction include: (a)
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(16) Selected NMR data are as follows,A-4(PFs); *H NMR (300 MHz,
acetonedg), : phen 8.78 (dJ = 8.05 Hz, 8H), 8.56 (dJ = 5.20
Hz, 8H), 8.39 (s, 8H), 7.79 (ddl; = 8.20 Hz,J, = 5.13 Hz, 8H);
tpphz 10.08 (dJ = 7.31 Hz, 4H), 8.37 (dJ = 5.21 Hz, 4H), 7.99

(13) (dd, J; = 8.19 Hz,J, = 5.12 Hz, 4H).A,A-4(PF)s 'H NMR (300

(14)

(15)

Crossley, M. J.; Burn, P. L.; Langford, S. J.; Prashar, JJ.KChem.
Soc., Chem. Commuri995 1921. (b) Amouyal, E.; Homsi, A.;
Chambron, J.-C.; Sauvage, J.:P.Chem. Soc., Dalton Tran$99Q
1841.

Selected data fa2(PFs). follow. Typical yield: 80%. Anal. Calcd
for CaeH24NgF120.PRuU: C, 43.60; H, 2.44; N, 11.30. Found: C,
43.55; H, 2.41; N, 10.91A-3(PFs),. Typical yield: 80%.!H NMR
(300 MHz, DMSO€), d: phen 8.76 (dJ = 7.17 Hz, 4H), 8.37 (s,
4H), 8.06 (d,J = 4.69 Hz, 2H), 7.80 (dJ = 4.76 Hz, 2H), 7.74 (m,
4H); phen(NH), 8.73 (d,J = 8.48 Hz, 2H), 7.68 (dJ = 4.75 Hz,
2H), 7.52.(dd,J; = 8.53,J, = 5.08 Hz, 2H), 5.99(s, 4H;NH,). Anal.
Calcd for 3(PFg)2, CssH2eNsgF12P2RU: C, 44.96; H, 2.73; N, 11.65.
Found: C, 44.68; H, 2.55; N, 11.38.

CD for A-3(PFs)2 in acetonitrile fexr in NM (Ae/M~1 cm™1)): 258
(+166), 270 230), 303 (85), 422 (+12), 470 ¢17).

17

MHz, acetoneds), : phen 8.02 (d,) = 8.05 Hz, 8H), 8.54 (dJ =
5.31 Hz, 8H), 8.43 (s, 8H), 7.83 (m, 8H); tpphz 10.11 Jds 8.37
Hz, 4H), 8.35 (d,J = 5.14 Hz, 4H), 8.03 (ddJ; = 8.39 Hz,J; =
5.47 Hz, 4H).4(PFR)4 (the product of racemic starting materials)
NMR (300 MHz, acetonek), : phen 8.78 (dJ = 8.32 Hz, 8H),
8.56 (d,J = 5.27 Hz, 8H), 8.39 (s, 8H), 7.78 (dd; = 8.32 Hz,J, =
5.32 Hz, 8H); tpphz 10.07 (dl = 8.03 Hz, 4H), 8.37 (dJ = 5.41
Hz, 4H), 7.98 (ddJ; = 7.98 Hz,J, = 5.48 Hz, 4H) 4(PFs)4 13C NMR

(75 MHz, acetonek), 6: phen 155.96, 148.84, 138.01, 132.08, 129.12,

127.16; tpphz 154.44, 154.01, 152.01, 141.40, 130.98, 128.43.

The slight CD detected indicates a minor optical impurity in the starting
materials. Possible racemization reactions during the coupling reaction
were ruled out by control experiments which indicated no change in

the optical activity of the reactants after refluxing in MeCMHfor
8 h.



